Complexidade de Algoritmos

Sequências e Conjuntos

Prof. Dr. Osvaldo Luiz de Oliveira

Estas anotações devem ser complementadas por apontamentos em aula.

Sequências e Conjuntos

- Conjunto: coleção finita de elementos distintos.
- Sequência: coleção finita e ordenada de elementos.

Obs.: se não especificarmos nada em contrário, sequências serão de elementos distintos.

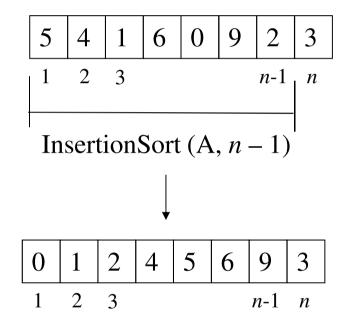
Ordenação

KNUTH, D. E.. The Art of Computer Programming. Vol 3, Sorting and Searching. Reading: Addison-Wesley, 1997, é uma "enciclopédia" sobre algoritmos de ordenação e busca.

Diferentes reduções, diferentes algoritmos

- I) Interface
 InsertionSort (A, n)
- II) Significado Ordena "in-loco" o vetor A de *n* elementos.

III) Redução



Inserir elemento A[n] na posição dele.

0	1	2	3	4	5	6	9			
1	2	3				<i>n</i> -1	n			

Comandos:

```
InsertionSort (A, n - 1);

i := n;

enquanto (i \ge 2 e A [i] > A [i - 1] )

{

troca := A[i]; A [i] := A [i - 1]; A [i - 1] := troca;

i := i - 1

}
```

IV) Base

A redução é de 1 em 1. Escolhemos base para n = 1.

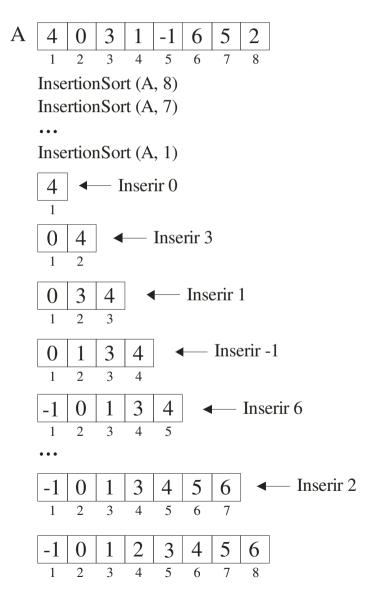
Comandos (para ordenar um vetor de 1 elemento):

Nenhum comando é necessário.

V) O Algoritmo

```
Algoritmo InsertionSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
       InsertionSort (A, n - 1);
       i := n;
       enquanto (i \ge 2 e A [i] > A [i-1])
          troca := A[i]; A[i] := A[i-1]; A[i-1] := troca;
          i := i - 1
```

Ilustrando o funcionamento do Insertion Sort



Complexidade do Insertion Sort

```
Algoritmo InsertionSort (A, n)
                                                  T(n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
                                  T(n-1)
       InsertionSort (A, n-1);
                                                                  n - 1
       i := n;
       enquanto (i \ge 2 e A [i] > A [i-1])
          troca := A[i]; A[i] := A[i-1]; A[i-1] := troca;
          i := i - 1
             T(1) = 1
```

Complexidade do Insertion Sort

$$T(n) = T(n - 1) + n - 1$$

 $T(1) = 1$

Resolvendo:

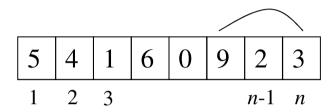
$$T(n) = O(n^2).$$

I) Interface SelectionSort (A, n)

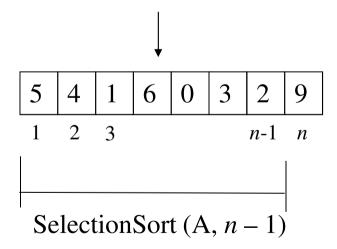
II) Significado

Ordena "in-loco" o vetor A de n elementos.

III) Redução (seleção do maior)



Localizar o maior elemento e trocar ele de posição com A[n].



Comandos:

```
im := Maior (A, n); // O algoritmo Maior retorna o índice do maior. troca := A[im]; A[im] := A[n]; A[n] := troca; SelectionSort (A, n – 1)
```

IV) Base

A redução é de 1 em 1. Escolhemos base para n = 1.

Comandos (para ordenar um vetor de 1 elemento):

Nenhum comando é necessário.

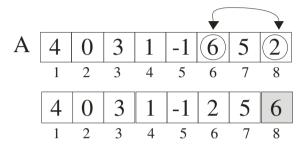
V) O Algoritmo

```
Algoritmo SelectionSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".

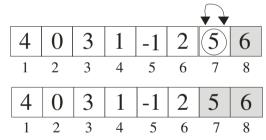
{
    se (n > 1)
{
        im := Maior (A, n); // O algoritmo Maior retorna o índice do maior.
        troca := A[im]; A [im] := A[n]; A[n] := troca;
        SelectionSort (A, n - 1)
}
```

Ilustrando o funcionamento do Selection Sort

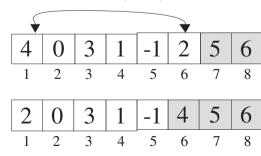
SelectionSort (A, 8)



SelectionSort (A, 7)



SelectionSort (A, 6)



• • •

Complexidade do Selection Sort

```
T(n)
Algoritmo SelectionSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
                             n - 1
      im := Maior (A, n); // O algoritmo Maior retorna o índice do maior.
      troca := A[im]; A[im] := A[n]; A[n] := troca;
      SelectionSort (A, n - 1)
                                      T(n-1)
             T(1) = 1
```

Complexidade do Selection Sort

$$T(n) = T(n-1) + n - 1$$

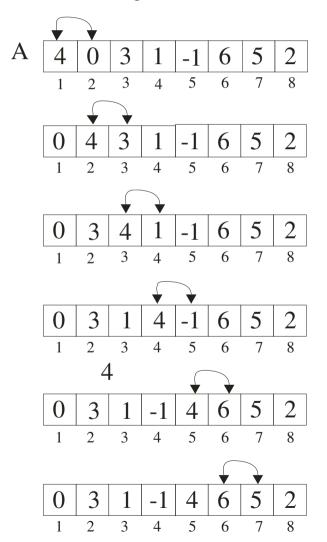
 $T(1) = 1$

Resolvendo:

$$T(n) = O(n^2).$$

- I) Interface
 BubbleSort (A, n)
- II) Significado Ordena "in-loco" o vetor A de *n* elementos.

III) Redução



•											
0	3	1	-1	4	5	6	2				
1	2	3	4	5	6	7	8				

BubbleSort (A, n - 1)

```
Comandos: para \ i := 1 \ at\'ention n=1 \ faça se \ (A[i] < A[i+1]) \{ troca := A[i]; \ A[i] := A[i+1]; \ A[i+1] := troca \} BubbleSort \ (A, n-1)
```

IV) Base

A redução é de 1 em 1. Escolhemos base para n = 1.

Comandos (para ordenar um vetor de 1 elemento):

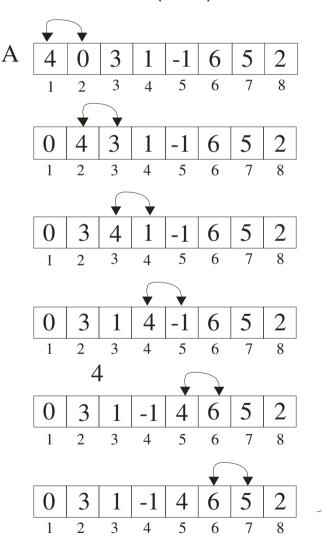
Nenhum comando é necessário.

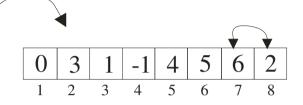
V) O Algoritmo

```
Algoritmo BubbleSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
      para i := 1 até n - 1 faça
        se (A[i] < A[i+1])
           troca := A[i]; A[i] := A[i+1]; A[i+1] := troca
      BubbleSort (A, n-1)
```

Ilustrando o funcionamento do Bubble Sort

BubbleSort (A, 8)





BubbleSort (A, 7)

Complexidade do BubbleSort

```
T(n)
Algoritmo BubbleSort (A, n)
Entrada: vetor A de n elementos, n \ge 1.
Saída: o vetor A, ordenado "in-loco".
   se (n > 1)
                                   n - 1
      para i := 1 até n - 1 faça
        se (A[i] < A[i+1])
           troca := A[i]; A[i] := A[i+1]; A[i+1] := troca
      BubbleSort (A, n-1)
                                     T(n-1)
             T(1) = 1
```

Complexidade do Bubble Sort

$$T(n) = T(n-1) + n - 1$$

 $T(1) = 1$

Resolvendo:

$$T(n) = O(n^2).$$

Merge Sort

Ver slides em

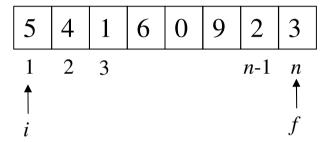
"Design e Análise de Algoritmos por indução".

I) Interface
QuickSort (A, i, f)

II) Significado Ordena "in-loco" o vetor A do índice *i* até o índice *f*.

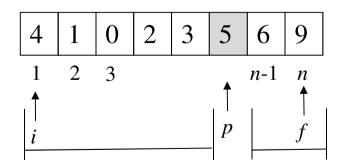
Obs.: o algoritmo QuickSort foi originalmente proposto por: HOARE, C. A. R. Quicksort, Computer Journal 5 (1), 1962 10-15.

III) Redução



Escolher um pivô (qualquer elemento). Elegemos A[i].

Particionar o vetor colocando os elementos menores do que o pivô antes dele e os maiores após ele. Seja *p* a posição do pivô após o particionamento.



QuickSort (A, i, p - 1)

QuickSort (A, p + 1, f)

Comandos:

```
p := Partição \ (A, i, f, i); \ // \ O \ quarto \ argumento \ indica \ a \ posição \ do \ elemento \\ // \ escolhido \ para \ pivô, \ antes \ do \ particionamento. \ O \\ // \ algoritmo \ retorna \ a \ posição \ p \ do \ pivô \ após \ o \\ // \ particionamento. \ QuickSort \ (A, i, p - 1); \ QuickSort \ (A, p + 1, f)
```

IV) Base

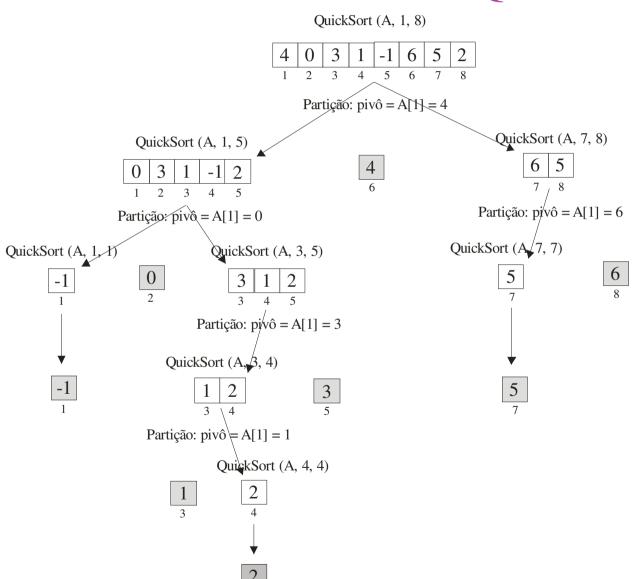
É caracterizada por i = f (um elemento) e i > f (zero elemento). Verificar. Comandos (para ordenar uma faixa de vetor com 0 ou 1 elemento):

Nenhum comando é necessário.

V) O Algoritmo

```
Algoritmo QuickSort (A, i, f)
Entrada: vetor 'A' e índices 'i' e 'f' do vetor.
Saída: o vetor A, ordenado "in-loco" do índice 'i' até o índice 'f'.
    se (i < f)
         p := Partição(A, i, f, i); // O quarto argumento indica a posição do elemento escolhido para pivô,
                                       // antes do particionamento. O algoritmo retorna a posição p do pivô após
                                       // o particionamento.
         QuickSort (A, i, p - 1);
         QuickSort (A, p + 1, f)
```

Ilustrando o funcionamento do Quick Sort



Complexidades do Quick Sort

Seja a quantidade de elementos n = f - i + 1

Pior caso

Ocorre quando o pivô divide o vetor em dois subvetores, um com zero elemento e outro com n-1 elementos

Melhor caso

Ocorre quando o pivô escolhido divide o vetor em dois subvetores de tamanho iguais a n/2.

Caso médio

É a média de todos os possíveis casos de posicionamento do pivô após a partição.

Complexidade (pior caso)

```
T(n)
Algoritmo QuickSort (A, i, f)
Entrada: vetor 'A' e índices 'i' e 'f' do vetor.
Saída: o vetor A, ordenado "in-loco" do índice 'i' até o índice 'f'.
   se (i < f)
                                   n - 1
                                           T(0), digamos.
       p := Partição (A, i, f, i);
       QuickSort (A, i, p - 1);
       QuickSort (A, p + 1, f)
                                        T(n - 1), digamos.
           T(1) = T(0) = 1
```

Complexidade (pior caso)

$$T(n) = T(n-1) + n - 1$$

$$T(0) = 1$$

Resolvendo:

$$T(n) = O(n^2).$$

Complexidade (melhor caso)

```
T(n)
Algoritmo QuickSort (A, i, f)
Entrada: vetor 'A' e índices 'i' e 'f' do vetor.
Saída: o vetor A, ordenado "in-loco" do índice 'i' até o índice 'f'.
   se (i < f)
                                   n - 1
                                           T(n/2)
       p := Partição (A, i, f, i);
       QuickSort (A, i, p - 1);
       QuickSort (A, p + 1, f)
                                        T(n/2).
           T(1) = T(0) = 1
```

Complexidade (melhor caso)

$$T(n) = 2T(n/2) + n - 1$$

 $T(1) = T(0) = 1$

Resolvendo (r. r. "dividir para conquistar"): $T(n) = O(n \log n).$

Complexidade (caso médio)

Seja *q* a quantidade de elementos antes da posição do pivô.

```
T(n)
Algoritmo QuickSort (A, i, f)
Entrada: vetor 'A' e índices 'i' e 'f' do vetor.
Saída: o vetor A, ordenado "in-loco" do índice 'i' até o índice 'f'.
   se (i < f)
                                  n - 1
                                          T(q)
       p := Partição (A, i, f, i);
       QuickSort (A, i, p - 1);
       QuickSort (A, p + 1, f)
                                       T(n-q-1).
           T(1) = T(0) = 0
```

Complexidade (caso médio)

q	Complexidade do caso	Probabilidade
0	T(0) + T(n-1) + n - 1	1/n
1	T(1) + T(n-2) + n - 1	1/n
2	T(2) + T(n-3) + n - 1	1/n
•••	•••	1/n
n - 3	T(n-3) + T(2) + n - 1	1/n
n - 2	T(n-2) + T(1) + n - 1	1/n
n - 1	T(n-1) + T(0) + n - 1	1/n

Complexidade (caso médio)

$$T(n) = \frac{n(n-1) + 2T(0) + 2T(1) + \dots + 2T(n-2) + 2T(n-1)}{n}$$

$$T(n) = n - 1 + \frac{2}{n} \sum_{i=0}^{n-1} T(i)$$

A Solução desta relação de recorrência pode ser feita pelo Método da Substituição (veja slides finais de "Design de Análise de Algoritmos por Indução").

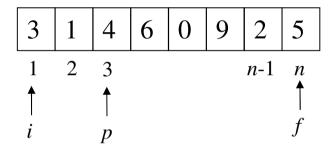
Solução: $T(n) = O(n \log(n))$.

I) Interface Partição (A, *i*, *f*, *p*)

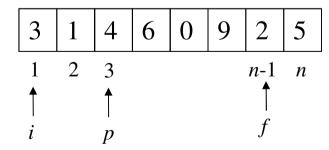
II) Significado

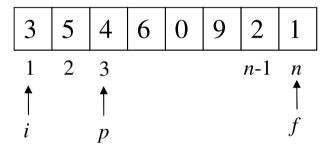
Particiona "in-loco" o vetor A tendo como pivô o elemento da posição p. A partição será realizada do índice i até o índice f, sendo que $i \le p \le f$. Retorna a posição final do pivô.

III) Redução

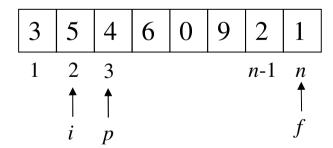


Se A[f] > A[p], então A[f] está na posição correta em relação ao pivô e o tamanho do problema pode ser diminuído em 1.





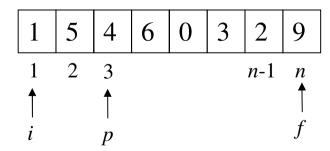
Se A[i] < A[p], então A[i] está na posição correta em relação ao pivô e o tamanho do problema também pode ser diminuído em 1.



Neste caso não ocorre de A[i] < A[p] e de A[f] > A[p].

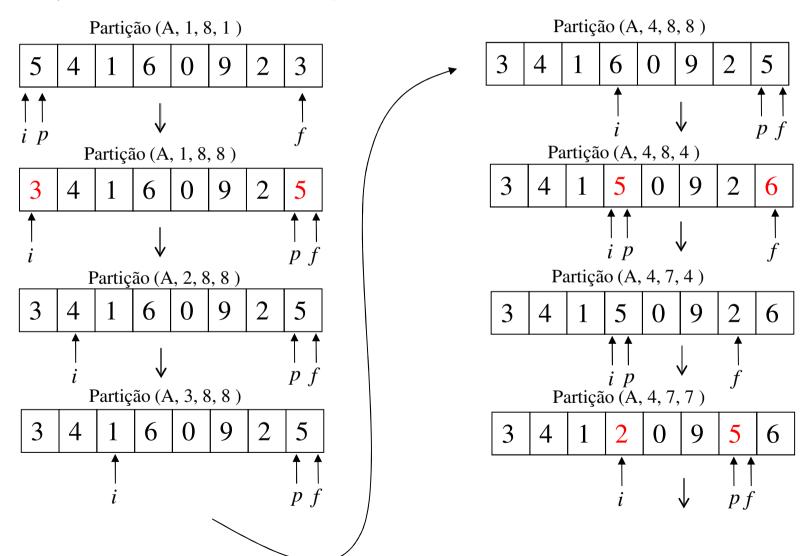
9	5	4	6	0	3	2	1
1	2	3				<i>n</i> -1	n
†		†					1
i		p					f

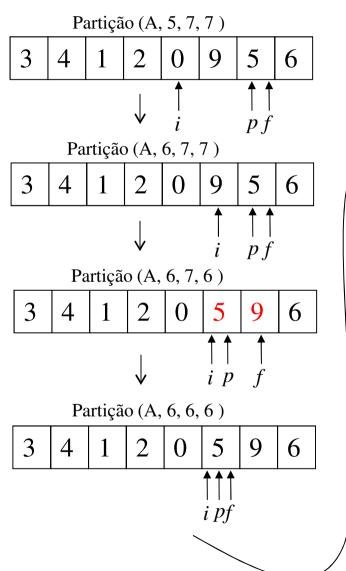
Troca-se A[i] de posição com A[f] (poder-se-ia diminuir o tamanho do problema, mas não faremos isto nesta versão)



```
Comandos:
 se (A[f] > A[p]) f := f - 1
 senão
     se (A[i] < A[p])i := i + 1
     senão {
         troca := A[i]; A[i] := A[f]; A[f] := troca;
        // troca o ponteiro p do pivô se o pivô for movimentado.
        se (p = i) p := f senão se (p = f) p := i
 retornar Partição (A, i, f, p)
```

IV) Base - Descobrindo qual é a base:





A base é caracterizada por i = f (a faixa compreende 1 elemento.

Pode-se dizer, neste caso que o vetor está particionado.

Comandos: retornar p

V) O Algoritmo

```
Algoritmo Partição (A, i, f, p)
Entrada: vetor 'A', índices 'i' e 'f' do vetor e 'p', a posição do pivô.
Saída: Particiona "in-loco" o vetor A em torno do pivô da posição dada por p. Retorna a
    posição do pivô após o particionamento.
   se (i = f) retornar p
   senão
        se (A[f] > A[p]) f := f - 1
        senão
            se(A[i] < A[p])i := i + 1
            senão {
               troca := A[i]; A[i] := A[f]; A[f] := troca;
               // troca o ponteiro p do pivô se o pivô for movimentado.
               se (p = i) p := f senão se (p = f) p := i
        retornar Partição (A, i, f, p)
```

Para criar novos algoritmos de ordenação, proponha outras reduções.

Seja criativo!

Resumo

- Insertion, Selection
 - pior, melhor e médio: $O(n^2)$.

• Bubble

- pior: $O(n^2)$.
- melhor: O(n).
- médio: $O(n^2)$.

Resumo

Merge

- pior, melhor e médio: O(n log n).

• Quick

- pior: $O(n^2)$.

- melhor: O(n log n).

- médio: O(n log n).

Quick Sort com mediana para pivô

```
Algoritmo QuickSort (A, i, f)

Entrada: vetor A e inteiros i \ge 1, f \ge 1.

Saída: o vetor A, ordenado "in-loco".

{
    se (i < f)
    {
        pivô := Mediana (A, i, f); // a variável "pivô" recebe o índice do elemento pivô.
        pivô := Partição (A, i, f, pivô); // "pivô" recebe o índice do pivô após a partição.
        QuickSort (A, i, pivô - 1);
        QuickSort (A, pivô + 1, f)
    }
}
```

Complexidade (pior, melhor e média)

Seja
$$n = f - i + 1$$
.

$$T(n) = 2 T(n/2) + O(n)$$

$$T(0) = T(1) = 0$$

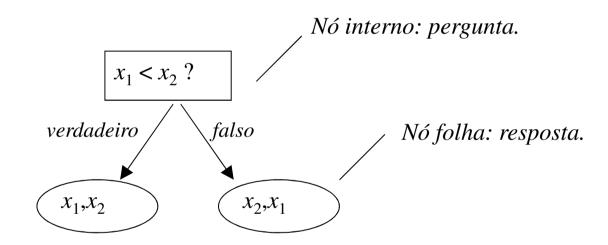
Logo:

$$T(n) = O(n \log n).$$

Cota inferior para ordenação

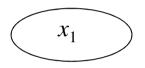
- Algoritmos baseados em comparação.
- Prove que qualquer algoritmo de ordenação baseado em comparação tem complexidade mínima de Ω ($n \log n$).

Modelo de computação: árvore de decisão

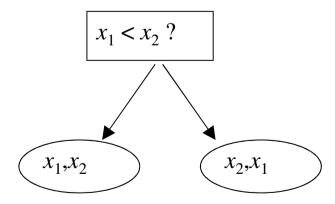


$$n = 1 e n = 2$$

$$n = 1$$
: { x_1 }

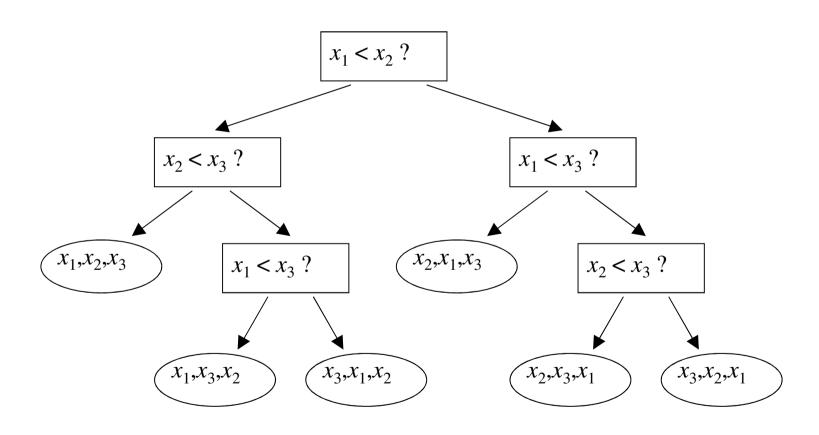


$$n = 2$$
: { x_1, x_2 }



$$n = 3$$

$$n = 3$$
: { x_1, x_2, x_3 }



Quantidade de folhas

n	Quantidade
1	1
2	2
3	6
•••	
n	n!
	Permutação de <i>n</i> elementos.

Concluindo

• Altura mínima da árvore de decisão:

log (*n*!).

Aproximação de Stirling.

• $log(n!) = \Omega(n log n)$.

• Logo a cota inferior é Ω ($n \log n$).

Ordenação em tempo linear

- Algoritmos baseados em propriedades especiais dos elementos a ordenar.
- Bucket Sort, Counting Sort e Radix Sort.

Bucket Sort

Pressuposição: elementos a ordenar são inteiros no intervalo de 1 a *k*.

Obs.: não há repetição de elementos.

Idéia

Alocar um *bucket* (vetor B) de tamanho igual a *k*.

$$k = 10$$

Iniciar elementos de B com 0.

O algoritmo

```
Algoritmo BucketSort (A, n, k)
Entrada: vetor A de n elementos inteiros situados no intervalo de 1 até k.
Saída: o vetor A ordenado.
Usa: vetor auxiliar B (bucket) de k elementos.
   para i := 1 até k faça B [i] := 0;
   para i := 1 até n faça B [A[i]] := 1;
  j := 1;
   para i := 1 até k faça
      se(B[i] = 1)
         A[j] := i; j := j + 1
```

Complexidade do Bucket Sort

```
para i := 1 até k faça B [i] := 0;

para i := 1 até n faça B [A[i]] := 1;

j := 1;

para i := 1 até k faça

se (B[i] = 1)

{

A[j] := i; j := j + 1}
```

Concluindo

$$T(n, k) = O(n + 2 k) = O(n + k).$$

Se
$$k = O(n)$$
 então $T(n) = O(2 n) = O(n)$.

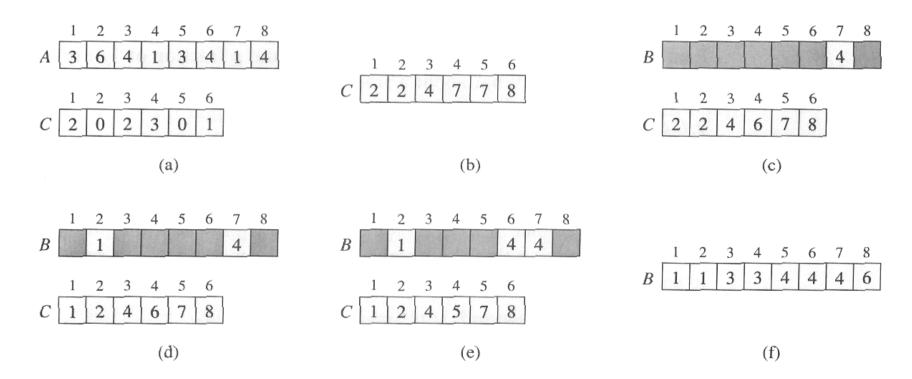
Se k >>> n então as complexidades de tempo e de espaço do algoritmo podem ser grandes.

Counting Sort

Pressuposição: elementos a ordenar são inteiros, possivelmente repetidos, no intervalo de 1 a *k*.

Ideia

Determinar, para cada elemento x, a quantidade de elementos que é menor ou igual a x.



Fonte: CORMEN, T.; LEISERSON, C.; RIVEST, R.; STEIN, C. Introduction to Algorithms. New York: MIT Press, 2004.

O algoritmo

```
Algoritmo CountingSort (A, B, n, k)
Entrada: vetor A de n elementos inteiros situados no intervalo de 1 até k.
Saída: vetor B de n elementos.
Usa: vetor auxiliar C de k elementos.
   para i := 1 até k faça C[i] := 0;
   para i := 1 até n faça C [A[i]] := C [A[i]] + 1;
  // Neste ponto cada C [i] contém a quantidade de elementos igual a i.
   para i := 2 até k faça C[i] := C[i] + C[i-1];
  // Neste ponto cada C [i] contém a quantidade de elementos menor ou igual a
   para i := n até 1 passo – 1 faça
      B [C [A[i]]] := A[i];
      C[A[i]] := C[A[i]] - 1
```

Complexidade

```
O(k)
para i := 1 até k faça C[i] := 0;
                                                         O(n)
para i := 1 até n faça C[A[i]] := C[A[i]];
                                                             O(k)
para i := 2 até k faça C [i] := C [i] + C [i - 1];
para i := n até 1 passo – 1 faça –
                                             O(n)
    B[C[A[i]] := A[i];
    C[A[i]] := C[A[i]] - 1
```

Concluindo

$$T(n, k) = O(n + k).$$

Se
$$k = O(n)$$
 então $T(n) = O(n)$.

Se k >>> n então as complexidades de tempo e de espaço do algoritmo podem ser grandes.

Este algoritmo é estável: elementos com o mesmo valor aparecerão na saída na mesma ordem em que estavam na entrada.

Radix Sort

Idéia: ordenar o conjunto dígito por dígito, do menos significativo ao mais significativo.

329		720		720		329
457		355		329		355
657		436		436		436
839	ապիտ	457	աայրո	839	աայրթ	457
436		657		355		657
720		329		457		720
355		839		657		839

Fonte: CORMEN, T.; LEISERSON, C.; RIVEST, R.; STEIN, C. Introduction to Algorithms. New York: MIT Press, 2004.

O algoritmo

```
Algoritmo RadixSort (A, n, d)
Entrada: vetor A de n elementos inteiros com d dígitos.
Saída: vetor A ordenado.

{
    para i := 1 até d faça

        Usar um algoritmo de ordenação estável para ordenar o vetor A pelo dígito i
}
```

Complexidade

- Depende do algoritmo estável usado na ordenação.
- Suponhamos usar o Counting Sort.
 - Se cada dígito está no intervalo de 1 até k então a ordenação do i-ésimo dígito é igial a O(n + k).
 - Logo T(n, d, k) = (d n + d k).
 - Se d for constante (d <<<< n) e k = O(n) então T(n) = O(n).

Busca

- Linear (em um vetor não ordenado visto): O(n).
- Binária (em um vetor ordenado visto): O(log n)

Obs.: A discussão destes algoritmos foi feita em "Design e Análise de Algoritmos por Indução".

Variações de busca binária (ver lista de exercícios)

- Busca em uma seqüência cíclica.
- Busca de um índice i tal que i = A[i].
- Busca em uma sequência de tamanho não conhecido.
- Cálculo de raízes de equações (método de Bolzano).

Estatísticas de ordem

Máximo e mínimo

- Máximo: $\Theta(n)$.
- Mínimo: $\Theta(n)$.
- Máximo e mínimo simultaneamente (ver lista de exercícios): aprox. 3n/2 comparações em vez de 2n comparações.

Seleção do *k*-ésimo menor

(caso médio linear)

Exercício: discuta como a seleção do *k*-ésimo menor pode ser feita em tempo médio linear.

Seleção do k-ésimo menor

(pior caso linear)

- S: uma coleção de *n* elementos, possivelmente repetidos.
- k: um inteiro $1 \le k \le n$.
- A idéia é encontrar um elemento m que particione S em:
 - S_1 : coleção de elementos menores do que m;
 - S₂: coleção de elementos iguais a *m*;
 - S_3 : coleção de elementos maiores do que m.

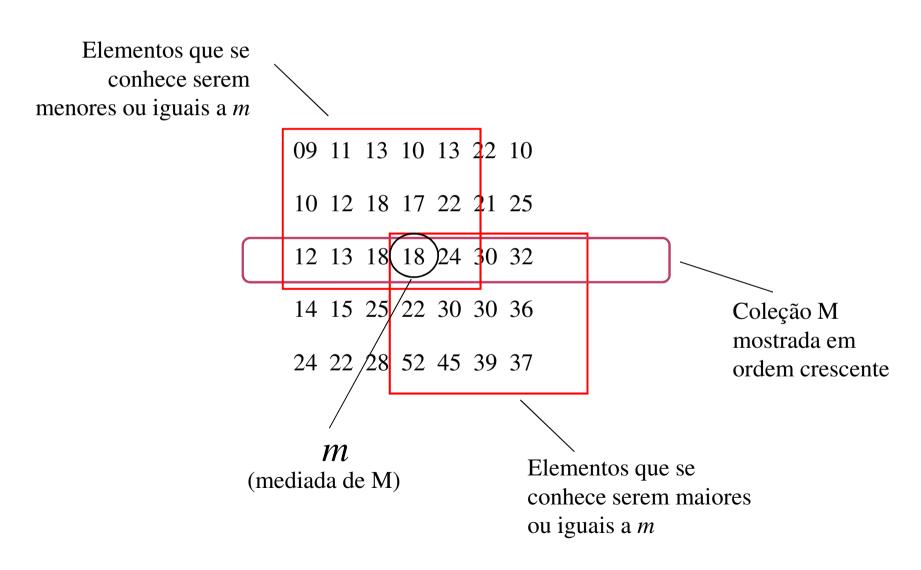
Obs.: este algoritmo foi originalmente proposto por:

BLUM, M.; FLOYD, R.W.; PRATT, V.; RIVEST, R. and TARJAN, R. Time bounds for selection, *J. Comput. System Sci.* 7 (1973) 448-461.

Como achar *m*?

- Dividir S em blocos de 5 elementos cada.
- Cada bloco de 5 elementos é ordenado e a mediana de cada bloco é utilizada para formar uma coleção M.
- Agora M contém $\lfloor n/5 \rfloor$ elementos e nós podemos achar a mediana m de M cinco vezes mais rápido.

Como achar *m*?



Particionar S em subcoleções S_1 , S_2 e S_3 tendo m como pivô

$$S_1 = \{ 09, 11, 13, 10, 13, 10, 10, 12, 17, 12, 13, 14, 15 \}$$

$$S_2 = \{ 18, 18, 18 \}$$

$$S_3 = \{ 22, 22, 21, 25, 24, 30, 32, 25, 22, 30, 30, 36, 24, 22, 28, 52, 45, 39, 37 \}$$

$$n_1 = |S_1| = 13$$

$$n_2 = |S_2| = 3$$

$$n_3 = |S_3| = 19$$

O Algoritmo

```
Algoritmo Seleção (S, n, k)
Entrada: S, coleção de n elementos, possivelmente repetidos e um inteiro 1 \le k \le n.

Saída: retorna o k-ésimo menor elemento da coleção S.

{
    se (n < 50)
{
        Ordenar S (qualquer algoritmo visto ou na "força bruta").
        Retornar o k-ésimo menor elemento em S.
    }
    senão
    {
```

Dividir S em n/5 blocos de 5 elementos (o último pode ter menos do que 5 elementos).

Ordenar cada bloco de 5 elementos (qualquer algoritmo).

Seja M o conjunto das medianas de cada bloco de 5 elementos.

$$m := \text{Seleção}(M, \lfloor n/5 \rfloor, \lfloor n/10 \rfloor)$$
. (m é a mediana de M).

Particionar S usando m como pivô em:

- S_1 : coleção de elementos menores do que m;
- S₂: coleção de elementos iguais a *m*;
- S_3 : coleção de elementos maiores do que m.

Sejam n_1 , n_2 e n_3 as quantidades de elementos em S_1 , S_2 e S_3 .

```
se (k \le n_1) retornar Seleção (S_1, n_1, k)
senão
se (k \le n_1 + n_2) retornar m
senão retornar Seleção (S_3, n_3, k - n_1 - n_2)
```

Complexidade

```
se (n < 50)
                                                                    O(1)
    Ordenar S (qualquer algoritmo ou na "força bruta").
    Retornar o k-ésimo menor elemento em S.
 senão
                                                                                                            O(n)
     Dividir S em \lfloor n/5 \rfloor blocos de 5 elementos (o último pode ter menos do que 5 elementos).
      Ordenar cada bloco de 5 elementos (qualquer algoritmo)...
      Seja M o conjunto das medianas de cada bloco de 5 elementos.
                                                                                O(n)
     m := \operatorname{Sele}(\tilde{a}_0(M, \lfloor n/5 \rfloor, \lfloor n/10 \rfloor)). (m \in a \text{ mediana de } M).
                                                                                  T(n/5)
      Particionar S usando m como pivô em:
         - S1: coleção de elementos menores do que m;
         - S2: coleção de elementos iguais a m;
                                                                                           O(n)
         - S3: coleção de elementos maiores do que m.
      Sejam n1, n2 e n3 as quantidades de elementos em S1, S2 e S3
     se (k \le n1) retornar Seleção (S1, n1, k)
                                                                     T(3n/4)
      senão
         se (k \le n1 + n2) retornar m
                                                                          T(3n/4)
         senão retornar Seleção (S3, n3, k - n1 - n2)
```

Complexidade

$$T(n) = T(n/5) + T(3n/4) + O(n)$$
, se $n \ge 50$

$$T(n) = O(1)$$
, se $n < 50$

Resolvendo (método da substituição)

Teorema

T(n) = O(n), ou seja, $T(n) \le a n$, para alguma constante a > 0 e $n \ge N$.

Bases:

Para n < 50, T(n) = c n, para alguma constante c > 0.

Para satisfazer o teorema, T(n) = c $n \le a$ n. Logo, $a \ge c$ (primeira restrição). Esta restrição é plenamente factível.

Hipóteses de indução:

$$T(n/5) \le a n/5$$
 e que $T(3n/4) \le a 3n/4$.

Prova de que a validade das hipóteses implicam na validade do teorema.

$$T(n) = T(n/5) + T(3n/4) + c$$
 $n \le a$ $n/5 + a$ $3n/4 + c$ $n = a$ n $19/20 + c$ n .

Para que provemos temos que chegar à conclusão de que $T(n) \le a n$.

Ou seja,
$$T(n) \le a \ n \ 19/20 + c \ n \le a \ n$$
.

Isto é verdade para a \geq 20 c (segunda restrição, que também é factível e não conflita com a primeira).

Por que divisão em blocos de 5 elementos?

• $1/5 + 3/4 = 19/20 \le 1$. Assim: $T(n/5) + T(3n/4) \le T(n)$.

Você poderia propor outras divisões?

Por que n < 50 para a base do algoritmo?

- A quantidade máxima de elementos em S_1 é $n-3\lfloor n/10 \rfloor$.
- Para $n \ge 50$ esta quantidade é menor que 3n/4.

n	$n-3\lfloor n/10 \rfloor$	<i>3n</i> /4
49	37	36.7
50	35	37.5
59	44	44.25